

Stiefel-Whitney classes

Jesús Martínez García

University of Edinburgh

February 2, 2009

1 Singular Cohomology

- Definition and examples
- Ring structure

1 Singular Cohomology

- Definition and examples
- Ring structure

2 Stiefel-Whitney classes and properties

- Axiomatic definition and examples
- Total Stiefel-Whitney Class
- Computations in \mathbb{RP}^n

1 Singular Cohomology

- Definition and examples
- Ring structure

2 Stiefel-Whitney classes and properties

- Axiomatic definition and examples
- Total Stiefel-Whitney Class
- Computations in \mathbb{RP}^n

3 Cobordism theory and vista to complex manifolds

- Application to Cobordism
- Chern classes

Singular Cohomology

Definition

Given a topological (possibly smooth) manifold M of dimension n , a group G and a chain of modules:

$$\dots \xrightarrow{d} C^{i-1}(M; G) \xrightarrow{d} C^i(M; G) \xrightarrow{d} C^{i+1}(M; G) \xrightarrow{d} \dots$$

where $C^i(M; G) = \text{Hom}_G(C_i(M; G), G)$ for

$C_i(M; G) = \{\sum \sigma_j : \sigma_j : \Delta^i \rightarrow M \text{ continuous}\}$ and $d \circ d = 0$, we define the *i-th cohomology group* of M with coefficients in G :

$$H^i(M; G) = \frac{\text{Ker}(d : C^i(M; G) \rightarrow C^{i+1}(M; G))}{\text{Im}(d : C^{i-1}(M; G) \rightarrow C^i(M; G))}$$

Assume $G = \mathbb{Z}$.

Example

$$H^i(\mathbb{R}^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Assume $G = \mathbb{Z}$.

Example

$$H^i(\mathbb{R}^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Example

$$H^i(S^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n \\ 0 & \text{otherwise} \end{cases}$$

Assume $G = \mathbb{Z}$.

Example

$$H^i(\mathbb{R}^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Example

$$H^i(S^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n \\ 0 & \text{otherwise} \end{cases}$$

Example

$$H^i(T^2) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n \\ \mathbb{Z} \oplus \mathbb{Z} & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}$$

Assume $G = \mathbb{Z}$.

Example

$$H^i(\mathbb{R}^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Example

$$H^i(S^n) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n \\ 0 & \text{otherwise} \end{cases}$$

Example

$$H^i(T^2) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n \\ \mathbb{Z} \oplus \mathbb{Z} & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}$$

We will focus in $G = \mathbb{Z}_2$. This guarantees orientability.

Definition

Given cochains $\psi \in C^m(M)$, $\mu \in C^k(M)$ their *cup product* $\psi \smile \mu \in C^{m+k}(M)$ is defined by its action on $\sigma \in C_{m+k}(M)$:

$$(\psi \smile \mu)(\sigma) = (-1)^{m+k} \psi(\sigma|_{(t_0, \dots, t_m)}) \cdot \mu(\sigma|_{(t_m, \dots, t_{m+k})})$$

Definition

Given cochains $\psi \in C^m(M)$, $\mu \in C^k(M)$ their *cup product* $\psi \smile \mu \in C^{m+k}(M)$ is defined by its action on $\sigma \in C_{m+k}(M)$:

$$(\psi \smile \mu)(\sigma) = (-1)^{m+k} \psi(\sigma|_{(t_0, \dots, t_m)}) \cdot \mu(\sigma|_{(t_m, \dots, t_{m+k})})$$

Lemma

The cup product descends to cohomology.

Definition

Given cochains $\psi \in C^m(M)$, $\mu \in C^k(M)$ their **cup product** $\psi \smile \mu \in C^{m+k}(M)$ is defined by its action on $\sigma \in C_{m+k}(M)$:

$$(\psi \smile \mu)(\sigma) = (-1)^{m+k} \psi(\sigma|_{(t_0, \dots, t_m)}) \cdot \mu(\sigma|_{(t_m, \dots, t_{m+k})})$$

Lemma

The cup product descends to cohomology.

Lemma

The cup product turns

$$H(M; G) = \bigoplus_i H^i(M; G)$$

into a graded ring.

Theorem (de Rham)

If M is smooth, there is a ring isomorphism

$$H^i(M; \mathbb{R}) \xrightarrow{\cong} H_{dR}^i(M)$$

induced by $\sigma \smile \mu \longrightarrow \sigma \wedge \mu$.

Theorem (de Rham)

If M is smooth, there is a ring isomorphism

$$H^i(M; \mathbb{R}) \xrightarrow{\cong} H_{dR}^i(M)$$

induced by $\sigma \smile \mu \longrightarrow \sigma \wedge \mu$.

Example

The cohomology of the Sphere has ring structure

$$H^*(S^n; \mathbb{Z}) = \frac{\mathbb{Z}[a]}{a^2 = 0}, \quad |a| = 1$$

Example

The Real Projective Space \mathbb{RP}^n has cohomology

$$H^i(\mathbb{RP}^n; \mathbb{Z}_2) = \begin{cases} \mathbb{Z}_2 & \text{if } i = 0, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

and its ring structure is

$$H^*(\mathbb{RP}^n) = \frac{\mathbb{Z}_2[a]}{a^{n+1} = 0}, \quad |a| = 1$$

Stiefel-Whitney classes and properties

Let $E \rightarrow M$, $\text{rk}(E) = n$, $\dim(M) = m$. We will give an axiomatic definition with 4 axioms and compute easy cases. Existence can be proved in general (see Milnor-Stasheff).

Stiefel-Whitney classes and properties

Let $E \rightarrow M$, $\text{rk}(E) = n$, $\dim(M) = m$. We will give an axiomatic definition with 4 axioms and compute easy cases. Existence can be proved in general (see Milnor-Stasheff).

Definition (Stiefel-Whitney classes (I & II))

The *Stiefel-Whitney classes* of the vector bundle E are

$$w_i(E) \in H^i(B; \mathbb{Z}_2)$$

with $w_i(E) = 0$ for $i > n$ and $w_0(E) = 1$.

Stiefel-Whitney classes and properties

Let $E \rightarrow M$, $\text{rk}(E) = n$, $\dim(M) = m$. We will give an axiomatic definition with 4 axioms and compute easy cases. Existence can be proved in general (see Milnor-Stasheff).

Definition (Stiefel-Whitney classes (I & II))

The *Stiefel-Whitney classes* of the vector bundle E are

$$w_i(E) \in H^i(B; \mathbb{Z}_2)$$

with $w_i(E) = 0$ for $i > n$ and $w_0(E) = 1$.

- (Naturality) Given $E \rightarrow M$, $F \rightarrow N$ with $f : E \rightarrow F$ descending to a map on the base spaces:

$$w_i(E) = f^* w_i(F)$$

- The second axiom provides easy consequences:

Example

If $E \cong F \Rightarrow w_i(E) = w_i(F)$.

- The second axiom provides easy consequences:

Example

If $E \cong F \Rightarrow w_i(E) = w_i(F)$.

Example

If E is trivial then $w_i(E) = 0$ for $i > 0$.

Definition (Stiefel-Whitney classes (III & IV))

- *(Whitney Product Theorem) If E and F are vectors over M*

$$w_k(E \oplus F) = \sum_{i=0}^k w_i(E) \smile w_{k-i}(F)$$

Definition (Stiefel-Whitney classes (III & IV))

- (*Whitney Product Theorem*) If E and F are vectors over M

$$w_k(E \oplus F) = \sum_{i=0}^k w_i(E) \smile w_{k-i}(F)$$

- The tautological line bundle over \mathbb{RP}^1 , namely

$$\gamma_1^1 = \{(x_1 : x_2, v) \in \mathbb{RP}^1 \times \mathbb{R}^2 \mid v \in (x_1, x_2)\}$$

has non-zero first characteristic class $w_1(\gamma_1^1) \neq 0$.

Definition (Stiefel-Whitney classes (III & IV))

- (*Whitney Product Theorem*) If E and F are vectors over M

$$w_k(E \oplus F) = \sum_{i=0}^k w_i(E) \smile w_{k-i}(F)$$

- The tautological line bundle over \mathbb{RP}^1 , namely

$$\gamma_1^1 = \{(x_1 : x_2, v) \in \mathbb{RP}^1 \times \mathbb{R}^2 \mid v \in (x_1, x_2)\}$$

has non-zero first characteristic class $w_1(\gamma_1^1) \neq 0$.

Lemma

If F is trivial, $w_i(E \oplus F) = w_i(E)$.

The graded ring structure of cohomology groups suggests a compact way of expressing all the classes together.

The graded ring structure of cohomology groups suggests a compact way of expressing all the classes together.

Definition

The *total Stiefel-Whitney class* of a vector bundle E of rank n is:

$$w(E) = 1 + w_1(E) + \dots + w_n(E) + 0 \dots$$

The graded ring structure of cohomology groups suggests a compact way of expressing all the classes together.

Definition

The *total Stiefel-Whitney class* of a vector bundle E of rank n is:

$$w(E) = 1 + w_1(E) + \dots + w_n(E) + 0 \dots$$

Remark

The Whitney Product Theorem can be expressed

$$w(E + F) = w(E)w(F)$$

where the product between elements is the cup product

Lemma

w is a group under multiplication (by the cup product).

Lemma

w is a group under multiplication (by the cup product).

Proof.

If $w = w_1 + \dots + w_n$, define its inverse:

$$\overline{w} = w^{-1} = 1 + \overline{w}_1 + \overline{w}_2 + \dots$$

Lemma

w is a group under multiplication (by the cup product).

Proof.

If $w = w_1 + \dots + w_n$, define its inverse:

$$\overline{w} = w^{-1} = 1 + \overline{w}_1 + \overline{w}_2 + \dots$$

where:

$$\overline{w}_1 = w_1, \quad \overline{w}_2 = w_1^2 + w_2, \quad \overline{w}_3 = w_1^3 + w_3$$

$$\overline{w}_n = w_1 \overline{w}_{n-1} + w_2 + \overline{w}_{n-2} + \dots + w_{n-1} \overline{w}_1 + w_n$$

Given $E \rightarrow M$ it is useful to find $F \rightarrow M$ such that
 $w^{-1}(E) = w(F)$.

Given $E \rightarrow M$ it is useful to find $F \rightarrow M$ such that $w^{-1}(E) = w(F)$.

If $E \rightarrow M$ is smooth we can use a partition of unity to get a metric on the fibres and get $E^\perp \rightarrow M$ such that $E \oplus E^\perp \rightarrow M$ is trivial.

Given $E \rightarrow M$ it is useful to find $F \rightarrow M$ such that $w^{-1}(E) = w(F)$.

If $E \rightarrow M$ is smooth we can use a partition of unity to get a metric on the fibres and get $E^\perp \rightarrow M$ such that $E \oplus E^\perp \rightarrow M$ is trivial. Therefore:

$$1 = w(E \oplus E^\perp) = w(E)w(E^\perp) \Rightarrow w^{-1}(E) = w(E^\perp)$$

Given $E \rightarrow M$ it is useful to find $F \rightarrow M$ such that $w^{-1}(E) = w(F)$.

If $E \rightarrow M$ is smooth we can use a partition of unity to get a metric on the fibres and get $E^\perp \rightarrow M$ such that $E \oplus E^\perp \rightarrow M$ is trivial. Therefore:

$$1 = w(E \oplus E^\perp) = w(E)w(E^\perp) \Rightarrow w^{-1}(E) = w(E^\perp)$$

E^\perp is the orthonormal bundle of E .

Computations in \mathbb{RP}^n

In this section we are interested in the tangent and tautological bundles on \mathbb{RP}^n .

Computations in \mathbb{RP}^n

In this section we are interested in the tangent and tautological bundles on \mathbb{RP}^n . Recall the cohomology ring of \mathbb{RP}^n :

$$H^*(\mathbb{RP}^n) = \frac{\mathbb{Z}_2[a]}{a^{n+1} = 0}, \quad |a| = 1$$

Computations in \mathbb{RP}^n

In this section we are interested in the tangent and tautological bundles on \mathbb{RP}^n . Recall the cohomology ring of \mathbb{RP}^n :

$$H^*(\mathbb{RP}^n) = \frac{\mathbb{Z}_2[a]}{a^{n+1} = 0}, \quad |a| = 1$$

Proposition

$$w(\gamma_n^1) = 1 + a$$

Denote by γ^\perp the orthonormal bundle of γ_n^1 in $\mathbb{RP}^n \times \mathbb{R}^{n+1}$.

Denote by γ^\perp the orthonormal bundle of γ_n^1 in $\mathbb{RP}^n \times \mathbb{R}^{n+1}$.

Lemma ([Mil-Sta 4.4])

] *The tangent bundle τ of \mathbb{RP}^n is isomorphic to $\text{Hom}(\gamma_n^1, \gamma^\perp)$*

Denote by γ^\perp the orthonormal bundle of γ_n^1 in $\mathbb{R}\mathbb{P}^n \times \mathbb{R}^{n+1}$.

Lemma ([Mil-Sta 4.4])

] *The tangent bundle τ of $\mathbb{R}\mathbb{P}^n$ is isomorphic to $\text{Hom}(\gamma_n^1, \gamma^\perp)$*

Denote by $w(\mathbb{R}\mathbb{P}^n)$ the Stiefel-Whitney class of τ , the tangent bundle of $\mathbb{R}\mathbb{P}^n$ and by ξ^k the trivial k -bundle of $\mathbb{R}\mathbb{P}^n$

Denote by γ^\perp the orthonormal bundle of γ_n^1 in $\mathbb{R}\mathbb{P}^n \times \mathbb{R}^{n+1}$.

Lemma ([Mil-Sta 4.4])

] *The tangent bundle τ of $\mathbb{R}\mathbb{P}^n$ is isomorphic to $\text{Hom}(\gamma_n^1, \gamma^\perp)$*

Denote by $w(\mathbb{R}\mathbb{P}^n)$ the Stiefel-Whitney class of τ , the tangent bundle of $\mathbb{R}\mathbb{P}^n$ and by ξ^k the trivial k -bundle of $\mathbb{R}\mathbb{P}^n$

Theorem

$\tau \oplus \xi^1 \cong \gamma_n^1 \oplus \dots \oplus \gamma_n^1$ *($n+1$) times and therefore:*

Denote by γ^\perp the orthonormal bundle of γ_n^1 in $\mathbb{R}\mathbb{P}^n \times \mathbb{R}^{n+1}$.

Lemma ([Mil-Sta 4.4])

] The tangent bundle τ of $\mathbb{R}\mathbb{P}^n$ is isomorphic to $\text{Hom}(\gamma_n^1, \gamma^\perp)$

Denote by $w(\mathbb{R}\mathbb{P}^n)$ the Stiefel-Whitney class of τ , the tangent bundle of $\mathbb{R}\mathbb{P}^n$ and by ξ^k the trivial k -bundle of $\mathbb{R}\mathbb{P}^n$

Theorem

$\tau \oplus \xi^1 \cong \gamma_n^1 \oplus \dots \oplus \gamma_n^1$ $(n+1)$ times and therefore:

$$w(\mathbb{R}\mathbb{P}^n) = w(\tau \oplus \xi^1) = w(\gamma_n^1 \oplus \dots \oplus \gamma_n^1) = (1+a)^{n+1} = \sum_{i=0}^n \binom{n+1}{i} a^i$$

Proof.

Since the bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ has a nowhere zero cross-section, it is trivial and:

Proof.

Since the bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ has a nowhere zero cross-section, it is trivial and:

$$\tau \oplus \xi^1 \cong \text{Hom}(\gamma_n^1, \gamma^\perp) \oplus \text{Hom}(\gamma_n^1, \gamma_n^1) \cong \text{Hom}(\gamma_n^1, \gamma^\perp \oplus \gamma_n^1)$$

Proof.

Since the bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ has a nowhere zero cross-section, it is trivial and:

$$\tau \oplus \xi^1 \cong \text{Hom}(\gamma_n^1, \gamma^\perp) \oplus \text{Hom}(\gamma_n^1, \gamma_n^1) \cong \text{Hom}(\gamma_n^1, \gamma^\perp \oplus \gamma_n^1)$$

and this is isomorphic to the $n+1$ -fold sums:

$$\text{Hom}(\gamma_n^1, \xi^{n+1}) \cong \bigoplus \text{Hom}(\gamma_n^1, \xi^1) \cong \bigoplus \gamma_n^1$$

Proof.

Since the bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ has a nowhere zero cross-section, it is trivial and:

$$\tau \oplus \xi^1 \cong \text{Hom}(\gamma_n^1, \gamma^\perp) \oplus \text{Hom}(\gamma_n^1, \gamma_n^1) \cong \text{Hom}(\gamma_n^1, \gamma^\perp \oplus \gamma_n^1)$$

and this is isomorphic to the $n+1$ -fold sums:

$$\text{Hom}(\gamma_n^1, \xi^{n+1}) \cong \bigoplus \text{Hom}(\gamma_n^1, \xi^1) \cong \bigoplus \gamma_n^1$$

□

As a remark, since all the coefficients of $w(\mathbb{RP}^n) = \sum_{i=0}^n \binom{n+1}{i} a^i$ must be in \mathbb{Z}_2 , then $w(\mathbb{RP}^7) = w(\mathbb{RP}^3) = 1$.

Applications to cobordism theory

Denote by $[M]$ the fundamental class of M in \mathbb{Z}_2 .

Applications to cobordism theory

Denote by $[M]$ the fundamental class of M in \mathbb{Z}_2 .

Definition

Given $r_1, \dots, r_n \in \mathbb{Z}_{\geq 0}$ with $\sum_{i=1}^n ir_i = n$, the *Stiefel-Whitney number* of M associated with the monomial $w_1^{r_1} \dots w_n^{r_n}$ is

Applications to cobordism theory

Denote by $[M]$ the fundamental class of M in \mathbb{Z}_2 .

Definition

Given $r_1, \dots, r_n \in \mathbb{Z}_{\geq 0}$ with $\sum_{i=1}^n ir_i = n$, the *Stiefel-Whitney number* of M associated with the monomial $w_1^{r_1} \dots w_n^{r_n}$ is

$$w_1^{r_1}(\tau_M) \cdot \dots \cdot w_n^{r_n}(\tau_M)[M] \in \mathbb{Z}_2$$

Applications to cobordism theory

Denote by $[M]$ the fundamental class of M in \mathbb{Z}_2 .

Definition

Given $r_1, \dots, r_n \in \mathbb{Z}_{\geq 0}$ with $\sum_{i=1}^n ir_i = n$, the *Stiefel-Whitney number* of M associated with the monomial $w_1^{r_1} \dots w_n^{r_n}$ is

$$w_1^{r_1}(\tau_M) \cdot \dots \cdot w_n^{r_n}(\tau_M)[M] \in \mathbb{Z}_2$$

Definition

A smooth compact n -dimensional manifold M without boundary is *nullbordant* if it is diffeomorphic to the boundary of some compact smooth $(n+1)$ -dimensional manifold W with boundary.

Theorem (Pontrjagin-Thom)

All the Stiefel-Whitney numbers of M are zero if and only if M is nullbordant.

Theorem (Pontrjagin-Thom)

All the Stiefel-Whitney numbers of M are zero if and only if M is nullbordant.

Challenge! Prove without using this theorem that \mathbb{RP}^3 and \mathbb{RP}^7 are the boundary of some manifold.

Thanks for coming!