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Introduction

I In 1940’s and 50’s mathematicians were very interested in
generalising ideas further than before

I Examples: abstract differential manifolds and abstract
varieties

I Universal algebra

I In this backdrop, category theory invented / described
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Definition of a category

Definition
A category C consists of a collection Obj of objects and Arr of
arrows. Arrows have a domain and codemain (or range), both in
Obj, so a typical arrow is written f : c → c ′, where c is the domain
of f and c ′ is the codomain of f , and c , c ′ ∈ Obj(C ). Arrows can
be composed. If f : c → c ′ and g : c ′ → c ′′, then there is an arrow
g ◦ f : c → c ′′. A category satisfies two additional axioms:

1. (f ◦ g) ◦ h = f ◦ (g ◦ h)

2. ∀c ∈ Obj(C ) : ∃! idc : c → c ∈ Arr(c) : ∀f : c → c ′ :
idc ′ ◦f = f = f ◦ idc
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Another simple example

Let C be a category. Then define the dual category C ∗ as follows:

I Objects of C ∗: same as C

I Arrows of C ∗: same as C but with reversed direction
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Size matters

Definition
We will denote the class of arrows with domain c and codomain c ′

by C (c , c ′), we call these hom-sets.

Definition
A category C is called small if both Obj(C ) and Arr(C ) are
actually sets and not proper classes, and large otherwise. A locally
small category C is a category such that for all objects c and c ′ of
C , C (c , c ′) is a set. If C (c, c ′) is a set, we say it is a small hom-set
and if C is locally small, we say that it has small hom-sets.

Alistair Wallis A Gentle Introduction to Category Theory
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Examples

I Set Objects: Sets, Arrows: Functions

I Top Objects: Topological spaces, Arrows: Continuous
functions

I Met Objects: Metric spaces, Arrows: Continuous functions

I Grp Objects: Groups, Arrows: Group homomorphisms

I Rng Objects: Rings, Arrows: Ring homomorphisms

I Pos Objects: Posets (partially ordered sets), Arrows: Order
preserving functions

Alistair Wallis A Gentle Introduction to Category Theory
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Examples

I Can also consider category of abelian groups, compact metric
/ topological spaces

I More complicated categories like chain complexes, cochain
complexes with arrows chain maps

Alistair Wallis A Gentle Introduction to Category Theory
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Presheaf (no category theory)

Let X be a topological space, Σ be a collection of sets (not
necessarily subsets of X ) and denote the collection of open sets of
X by O(X ). A presheaf F on X is a collection of maps
F : O(X )→ Σ which assigns for each open set U of our
topological space a set F (U) in Σ. In addition, every time V ⊆ U
for open sets in X , we have a map a(U,V ) : F (U)→ F (V ). We
require that these maps satisfy:

1. a(U,U) is the identity map for the set F (U)

2. For W ⊆ V ⊆ U, then a(W ,V ) ◦ a(V ,U) = a(W ,U)

Alistair Wallis A Gentle Introduction to Category Theory
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Presheaf (some category theory)

Let X be a topological space, C be a category and denote the
collection of open sets of X by O(X ). A presheaf F on X is a
collection of maps F : O(X )→ Obj(C ) which assigns for each
open set U of our topological space an object F (U) in our
category. In addition, every time V ⊆ U for open sets in X , we
have a morphism a(U,V ) : F (U)→ F (V ) in C . We require that
these morphisms satisfy:

1. a(U,U) is the identity morphism for F (U)

2. For W ⊆ V ⊆ U, then a(W ,V ) ◦ a(V ,U) = a(W ,U)

Alistair Wallis A Gentle Introduction to Category Theory
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Monics

Definition
Let C be a category. An arrow m : c → c ′ is called monic if for
each pair of arrows f : d → c , g : d → c , we have m ◦ f = m ◦ g
implies f = g .

Example

Consider the category Grp of groups and homomorphisms. Then a
monomorphism m : G → H is monic.

Alistair Wallis A Gentle Introduction to Category Theory
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Epics

Definition
Let C be a category. An arrow e : c → c ′ is called epic if for each
pair of arrows f : c ′ → d , g : c ′ → d , we have f ◦ e = g ◦ e implies
f = g .

Example

Consider the category Grp of groups and homomorphisms. Then
an epimorphism e : G → H is epic.

Alistair Wallis A Gentle Introduction to Category Theory
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Isomorphisms

Definition
Let C be a category. A pair of arrows f : c → d and g : d → c
such that g ◦ f = idc and f ◦ g = idd is called an inverse pair of
isomorphisms and each component is called an isomorphism.

Examples

I In Set, a bijective function is an isomorphism

I In Grp, a group isomorphism is an isomorphism

Alistair Wallis A Gentle Introduction to Category Theory
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Definition

Definition
A (covariant) functor is a morphism T : C → D of categories
which has an object function which assigns to each object c of C
an object Tc of B and an arrow function which assigns to each
arrow f : c → c ′ of C an arrow Tf : Tc → Tc ′ of D such that
T (1c) = 1Tc and T (g ◦ f ) = Tg ◦ Tf (]).

A contravariant functor is a functor in which the final condition (])
becomes T (g ◦ f ) = Tf ◦ Tg .

Alistair Wallis A Gentle Introduction to Category Theory
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Simple examples of a functor

I Let C be a category. Define a functor T : C → C by
T (c) = c for every c ∈ Obj(C ) and T (f ) = f for every
f ∈ Arr(C ). This is a covariant functor

I Let C be a category and C ∗ the dual category. Define a
functor T : C → C ∗ by T (c) = c for every c ∈ Obj(C ) and
T (f ) = f −1 for every f ∈ Arr(C ). This is a contravariant
functor.

Alistair Wallis A Gentle Introduction to Category Theory
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Example of a functor

Let D be a category and let r ∈ Obj(D) be fixed. We will now
construct a slightly more complicated example of a functor
D(r ,−) : D → Set, which we will call the hom-functor of D.

Given an object d from D, D(r ,−)(d) returns D(r , d), defined
above, and this is an element of Set. Given an arrow f : d → d ′,
D(r ,−)(f ) returns a function f̄ : D(r , d)→ D(r , d ′), denoted
D(r , f ), with the property that D(r , f )(idr ) = f , for any arrow
f : r → r ′.

Alistair Wallis A Gentle Introduction to Category Theory
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Example of a functor

If f : r → r is the identity arrow of r , D(r , f ) will be the function
f : D(r , r)→ D(r , r) sending each element to itself and for
f , g ∈ Obj(D), we have D(r , g ◦ f ) = D(r , g) ◦ D(r , f ), where the
first ◦ denotes composition of arrows in the category D and the
second denotes composition of functions (which of course are the
arrows of Set), so that this is a covariant functor.

Alistair Wallis A Gentle Introduction to Category Theory
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Definition

Definition
Let C , D be categories. Given functors S ,T : C → D, a natural
transformation τ : S → T is a function which assigns to each
object c of C an arrow τc = τc : Sc → Tc of D such that for
every arrow f : c → c ′ of C ,

Tf ◦ τc = τc ′ ◦ Sf . �

We then say τc is natural in c . A natural transformation for which
every arrow τc is invertible (f : c → d ⇒ ∃g : d → c) is called a
natural isomorphism. For two contravariant functors, � becomes:

Sf ◦ τc ′ = τc ◦ Tf .

Alistair Wallis A Gentle Introduction to Category Theory
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Advantages

I If we prove a theorem in category theory, it can apply to
things seemingly unrelated

I Very general - as mathematicians we like generalising things

I Unifying language to describe many different but related
things

Alistair Wallis A Gentle Introduction to Category Theory
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Disadvantages

I So far it has mainly been used as a language, not for proving
things

I Question: intuitively, what have I been talking about? What
is a functor, a monic etc. in pictures / everyday concepts?
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Motivation

Group actions and by extension monoid actions have a more
intuitive feel to them. This means the above ideas might seem
more intuitive if done in different language.

Alistair Wallis A Gentle Introduction to Category Theory
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Definition

Definition
Let C be a set equipped with a partial binary operation which we
shall denote by · or by concatenation. If x , y ∈ C and the product
x · y is defined we write ∃x · y . An element e ∈ C is called an
identity if ∃e · x ⇒ e · x = x and ∃x · e ⇒ x · e = x . The set of
identities of C is denoted C0. The pair (C , ·) is said to be a
category if the following axioms hold:

1. x · (y · z) exists if and only if (x · y) · z exists, in which case
they are equal

2. x · (y · z) exists if and only if x · y and y · z exist

3. For each x ∈ C there exist identities e and f such that ∃x · e
and ∃f · x .

Alistair Wallis A Gentle Introduction to Category Theory
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Remarks

Remark
It can be deduced that the identies in (3) are uniquely determined
by x (Suppose e and f are both right identities of x . Then
∃(x · e) · f . So ∃e · f . So e = e · f = f ). Therefore, we will write
e = d(x) and f = r(x).

Lemma
∃x · y ⇔ d(x) = r(y)

Alistair Wallis A Gentle Introduction to Category Theory
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Proof

Proof.
(⇒) Suppose ∃x · y . Denote e := d(x). Then ∃(x · e) · y . So
∃x · (e · y). So ∃e · y . Since e is an identity, e · y = y . Therefore,
e = r(y).
(⇐) Suppose z = d(x) = r(y). Then ∃x · z and ∃z · y . So,
∃(x · z) · y = x · y . Therefore, ∃x · y .

Alistair Wallis A Gentle Introduction to Category Theory



Outline
Introduction

Classical Category Theory
Comments

Categories as monoids

Motivation
Basics

Functors

Definition
Let C , D be categories. A covariant functor T is a morphism
T : C → D such that:

1. If e ∈ C0, then T (e) ∈ D0.

2. If x ∈ C with d(x) = e and r(x) = f , then d(T (x)) = T (e)
and r(T (x)) = T (f ).

3. If ∃x · y , then ∃T (x) · T (y) and T (x · y) = T (x) · T (y).

A morphism T satisfying (1) & (2), in addition to:

I If ∃x · y , then ∃T (y) · T (x) and T (x · y) = T (y) · T (x).

is called a contravariant functor.

Alistair Wallis A Gentle Introduction to Category Theory
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Natural Transformations

Definition
Let C , D be categories and S ,T : C → D be covariant functors. A
natural transformation τ : S → T is a a function which assigns to
each identity e ∈ C0 an element τe of D with d(τe) = S(e) and
r(τe) = T (e) and for every y ∈ C with d(y) = e and r(y) = f we
have ∃T (y) · τe , ∃τf · S(y) and

T (y) · τe = τf · S(y). �

We then say τe is natural in e.

Alistair Wallis A Gentle Introduction to Category Theory
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Natural Transformations

Definition
A natural transformation such that for all such τe there is a τf
with d(τf ) = T (e) and r(τf ) = S(e) is called a natural
isomorphism. For two contravariant functors, we have the same
except � becomes:

S(y) · τf = τe · T (y).
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Actions

Definition
Let C be a category, X a set, and p : X → C0 be a function. Let
C ∗ X be the set

C ∗ X := {(c , x) ∈ C × X : d(c) = p(x)} .

We suppose in addition there is a function C ∗ X → X , denoted by
(c , x) 7→ c · x . We shall write ∃c · x if (c , x) ∈ C ∗ X . We say that
C acts on X (on the left), and that X is a left C-system if the
following axioms hold:

1. ∃p(x) · x and p(x) · x = x for all x ∈ X .

2. If ∃c · x , then p(c · x) = r(c).

3. If ∃cd in C and ∃(cd) · x , then ∃d · x and ∃c · (d · x) and
(cd) · x = c · (d · x).

Alistair Wallis A Gentle Introduction to Category Theory
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