

A Gentle Introduction to Category Theory

Alistair Wallis

January 31, 2010

Introduction

Introduction

Classical Category Theory

Definitions

Examples

Types of arrows

Functors

Natural transformations

Comments

Advantages and Disadvantages

Categories as monoids

Motivation

Basics

Introduction

- ▶ In 1940's and 50's mathematicians were very interested in generalising ideas further than before
- ▶ Examples: abstract differential manifolds and abstract varieties
- ▶ Universal algebra
- ▶ In this backdrop, category theory invented / described

Definition of a category

Definition

A *category* C consists of a collection Obj of objects and Arr of arrows. Arrows have a *domain* and *codomain* (or *range*), both in Obj , so a typical arrow is written $f : c \rightarrow c'$, where c is the domain of f and c' is the codomain of f , and $c, c' \in \text{Obj}(C)$. Arrows can be composed. If $f : c \rightarrow c'$ and $g : c' \rightarrow c''$, then there is an arrow $g \circ f : c \rightarrow c''$. A category satisfies two additional axioms:

1. $(f \circ g) \circ h = f \circ (g \circ h)$
2. $\forall c \in \text{Obj}(C) : \exists! \text{id}_c : c \rightarrow c \in \text{Arr}(c) : \quad \forall f : c \rightarrow c' : \text{id}_{c'} \circ f = f = f \circ \text{id}_c$

Simple example

Another simple example

Let C be a category. Then define the dual category C^* as follows:

- ▶ Objects of C^* : same as C
- ▶ Arrows of C^* : same as C but with reversed direction

Size matters

Definition

We will denote the class of arrows with domain c and codomain c' by $C(c, c')$, we call these *hom-sets*.

Definition

A category C is called *small* if both $\text{Obj}(C)$ and $\text{Arr}(C)$ are actually sets and not proper classes, and large otherwise. A *locally small category* C is a category such that for all objects c and c' of C , $C(c, c')$ is a set. If $C(c, c')$ is a set, we say it is a *small hom-set* and if C is locally small, we say that it has *small hom-sets*.

Examples

- ▶ **Set** Objects: Sets, Arrows: Functions
- ▶ **Top** Objects: Topological spaces, Arrows: Continuous functions
- ▶ **Met** Objects: Metric spaces, Arrows: Continuous functions
- ▶ **Grp** Objects: Groups, Arrows: Group homomorphisms
- ▶ **Rng** Objects: Rings, Arrows: Ring homomorphisms
- ▶ **Pos** Objects: Posets (partially ordered sets), Arrows: Order preserving functions

Examples

- ▶ Can also consider category of abelian groups, compact metric / topological spaces
- ▶ More complicated categories like chain complexes, cochain complexes with arrows chain maps

Presheaf (no category theory)

Let X be a topological space, Σ be a collection of sets (not necessarily subsets of X) and denote the collection of open sets of X by $\mathcal{O}(X)$. A *presheaf* F on X is a collection of maps $F : \mathcal{O}(X) \rightarrow \Sigma$ which assigns for each open set U of our topological space a set $F(U)$ in Σ . In addition, every time $V \subseteq U$ for open sets in X , we have a map $a(U, V) : F(U) \rightarrow F(V)$. We require that these maps satisfy:

1. $a(U, U)$ is the identity map for the set $F(U)$
2. For $W \subseteq V \subseteq U$, then $a(W, V) \circ a(V, U) = a(W, U)$

Presheaf (some category theory)

Let X be a topological space, C be a category and denote the collection of open sets of X by $\mathcal{O}(X)$. A *presheaf* F on X is a collection of maps $F : \mathcal{O}(X) \rightarrow \text{Obj}(C)$ which assigns for each open set U of our topological space an object $F(U)$ in our category. In addition, every time $V \subseteq U$ for open sets in X , we have a morphism $a(U, V) : F(U) \rightarrow F(V)$ in C . We require that these morphisms satisfy:

1. $a(U, U)$ is the identity morphism for $F(U)$
2. For $W \subseteq V \subseteq U$, then $a(W, V) \circ a(V, U) = a(W, U)$

Monics

Definition

Let C be a category. An arrow $m : c \rightarrow c'$ is called *monic* if for each pair of arrows $f : d \rightarrow c$, $g : d \rightarrow c$, we have $m \circ f = m \circ g$ implies $f = g$.

Example

Consider the category **Grp** of groups and homomorphisms. Then a monomorphism $m : G \rightarrow H$ is monic.

Epics

Definition

Let C be a category. An arrow $e : c \rightarrow c'$ is called *epic* if for each pair of arrows $f : c' \rightarrow d$, $g : c' \rightarrow d$, we have $f \circ e = g \circ e$ implies $f = g$.

Example

Consider the category **Grp** of groups and homomorphisms. Then an epimorphism $e : G \rightarrow H$ is epic.

Isomorphisms

Definition

Let C be a category. A pair of arrows $f : c \rightarrow d$ and $g : d \rightarrow c$ such that $g \circ f = \text{id}_c$ and $f \circ g = \text{id}_d$ is called an *inverse pair of isomorphisms* and each component is called an *isomorphism*.

Examples

- ▶ In **Set**, a bijective function is an isomorphism
- ▶ In **Grp**, a group isomorphism is an isomorphism

Definition

Definition

A (covariant) *functor* is a morphism $T : C \rightarrow D$ of categories which has an *object function* which assigns to each object c of C an object Tc of D and an *arrow function* which assigns to each arrow $f : c \rightarrow c'$ of C an arrow $Tf : Tc \rightarrow Tc'$ of D such that $T(1_c) = 1_{Tc}$ and $T(g \circ f) = Tg \circ Tf$ (\sharp).

A *contravariant functor* is a functor in which the final condition (\sharp) becomes $T(g \circ f) = Tf \circ Tg$.

Simple examples of a functor

- ▶ Let C be a category. Define a functor $T : C \rightarrow C$ by $T(c) = c$ for every $c \in \text{Obj}(C)$ and $T(f) = f$ for every $f \in \text{Arr}(C)$. This is a covariant functor
- ▶ Let C be a category and C^* the dual category. Define a functor $T : C \rightarrow C^*$ by $T(c) = c$ for every $c \in \text{Obj}(C)$ and $T(f) = f^{-1}$ for every $f \in \text{Arr}(C)$. This is a contravariant functor.

Example of a functor

Let D be a category and let $r \in \text{Obj}(D)$ be fixed. We will now construct a slightly more complicated example of a functor $D(r, -) : D \rightarrow \mathbf{Set}$, which we will call the *hom-functor of D* .

Given an object d from D , $D(r, -)(d)$ returns $D(r, d)$, defined above, and this is an element of **Set**. Given an arrow $f : d \rightarrow d'$, $D(r, -)(f)$ returns a function $\bar{f} : D(r, d) \rightarrow D(r, d')$, denoted $D(r, f)$, with the property that $D(r, f)(\text{id}_r) = f$, for any arrow $f : r \rightarrow r'$.

Example of a functor

If $f : r \rightarrow r$ is the identity arrow of r , $D(r, f)$ will be the function $f : D(r, r) \rightarrow D(r, r)$ sending each element to itself and for $f, g \in \text{Obj}(D)$, we have $D(r, g \circ f) = D(r, g) \circ D(r, f)$, where the first \circ denotes composition of arrows in the category D and the second denotes composition of functions (which of course are the arrows of **Set**), so that this is a covariant functor.

Definition

Definition

Let C, D be categories. Given functors $S, T : C \rightarrow D$, a *natural transformation* $\tau : S \rightarrow T$ is a function which assigns to each object c of C an arrow $\tau_c = \tau c : Sc \rightarrow Tc$ of D such that for every arrow $f : c \rightarrow c'$ of C ,

$$Tf \circ \tau_c = \tau_{c'} \circ Sf. \quad \diamond$$

We then say τ_c is *natural in c*. A natural transformation for which every arrow τ_c is invertible ($f : c \rightarrow d \Rightarrow \exists g : d \rightarrow c$) is called a *natural isomorphism*. For two contravariant functors, \diamond becomes:

$$Sf \circ \tau_{c'} = \tau_c \circ Tf.$$

Advantages

- ▶ If we prove a theorem in category theory, it can apply to things seemingly unrelated
- ▶ Very general - as mathematicians we like generalising things
- ▶ Unifying language to describe many different but related things

Disadvantages

- ▶ So far it has mainly been used as a language, not for proving things
- ▶ Question: intuitively, what have I been talking about? What is a functor, a monic etc. in pictures / everyday concepts?

Motivation

Group actions and by extension monoid actions have a more intuitive feel to them. This means the above ideas might seem more intuitive if done in different language.

Definition

Definition

Let C be a set equipped with a partial binary operation which we shall denote by \cdot or by concatenation. If $x, y \in C$ and the product $x \cdot y$ is defined we write $\exists x \cdot y$. An element $e \in C$ is called an *identity* if $\exists e \cdot x \Rightarrow e \cdot x = x$ and $\exists x \cdot e \Rightarrow x \cdot e = x$. The set of identities of C is denoted C_0 . The pair (C, \cdot) is said to be a *category* if the following axioms hold:

1. $x \cdot (y \cdot z)$ exists if and only if $(x \cdot y) \cdot z$ exists, in which case they are equal
2. $x \cdot (y \cdot z)$ exists if and only if $x \cdot y$ and $y \cdot z$ exist
3. For each $x \in C$ there exist identities e and f such that $\exists x \cdot e$ and $\exists f \cdot x$.

Remarks

Remark

It can be deduced that the identities in (3) are uniquely determined by x (Suppose e and f are both right identities of x . Then $\exists(x \cdot e) \cdot f$. So $\exists e \cdot f$. So $e = e \cdot f = f$). Therefore, we will write $e = \mathbf{d}(x)$ and $f = \mathbf{r}(x)$.

Lemma

$$\exists x \cdot y \Leftrightarrow \mathbf{d}(x) = \mathbf{r}(y)$$

Proof

Proof.

(\Rightarrow) Suppose $\exists x \cdot y$. Denote $e := \mathbf{d}(x)$. Then $\exists(x \cdot e) \cdot y$. So $\exists x \cdot (e \cdot y)$. So $\exists e \cdot y$. Since e is an identity, $e \cdot y = y$. Therefore, $e = \mathbf{r}(y)$.

(\Leftarrow) Suppose $z = \mathbf{d}(x) = \mathbf{r}(y)$. Then $\exists x \cdot z$ and $\exists z \cdot y$. So, $\exists(x \cdot z) \cdot y = x \cdot y$. Therefore, $\exists x \cdot y$. □

Functors

Definition

Let C, D be categories. A *covariant functor* T is a morphism $T : C \rightarrow D$ such that:

1. If $e \in C_0$, then $T(e) \in D_0$.
2. If $x \in C$ with $\mathbf{d}(x) = e$ and $\mathbf{r}(x) = f$, then $\mathbf{d}(T(x)) = T(e)$ and $\mathbf{r}(T(x)) = T(f)$.
3. If $\exists x \cdot y$, then $\exists T(x) \cdot T(y)$ and $T(x \cdot y) = T(x) \cdot T(y)$.

A morphism T satisfying (1) & (2), in addition to:

- If $\exists x \cdot y$, then $\exists T(y) \cdot T(x)$ and $T(x \cdot y) = T(y) \cdot T(x)$.

is called a *contravariant functor*.

Natural Transformations

Definition

Let C, D be categories and $S, T : C \rightarrow D$ be covariant functors. A *natural transformation* $\tau : S \rightarrow T$ is a function which assigns to each identity $e \in C_0$ an element τ_e of D with $\mathbf{d}(\tau_e) = S(e)$ and $\mathbf{r}(\tau_e) = T(e)$ and for every $y \in C$ with $\mathbf{d}(y) = e$ and $\mathbf{r}(y) = f$ we have $\exists T(y) \cdot \tau_e, \exists \tau_f \cdot S(y)$ and

$$T(y) \cdot \tau_e = \tau_f \cdot S(y). \quad \diamond$$

We then say τ_e is *natural* in e .

Natural Transformations

Definition

A natural transformation such that for all such τ_e there is a τ_f with $\mathbf{d}(\tau_f) = T(e)$ and $\mathbf{r}(\tau_f) = S(e)$ is called a *natural isomorphism*. For two contravariant functors, we have the same except \diamond becomes:

$$S(y) \cdot \tau_f = \tau_e \cdot T(y).$$

Actions

Definition

Let C be a category, X a set, and $\mathbf{p} : X \rightarrow C_0$ be a function. Let $C * X$ be the set

$$C * X := \{(c, x) \in C \times X : \mathbf{d}(c) = \mathbf{p}(x)\}.$$

We suppose in addition there is a function $C * X \rightarrow X$, denoted by $(c, x) \mapsto c \cdot x$. We shall write $\exists c \cdot x$ if $(c, x) \in C * X$. We say that C acts on X (on the left), and that X is a *left C-system* if the following axioms hold:

1. $\exists \mathbf{p}(x) \cdot x$ and $\mathbf{p}(x) \cdot x = x$ for all $x \in X$.
2. If $\exists c \cdot x$, then $\mathbf{p}(c \cdot x) = \mathbf{r}(c)$.
3. If $\exists cd$ in C and $\exists(cd) \cdot x$, then $\exists d \cdot x$ and $\exists c \cdot (d \cdot x)$ and $(cd) \cdot x = c \cdot (d \cdot x)$.