Statistical Inference in Quantum Computing

Alistair Wallis

February 1, 2010

Alistair Wallis Statistical Inference in Quantum Computing



Introduction
Introduction

Postulates
States
Evolution
Composite Systems
Measurement

Statistics
MLE
Statistics in QM

Alistair Wallis Statistical Inference in Quantum Computing



| i q
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Motivation

v

Traditional computing: Information sent as bits - 0's and 1's.

v

Quantum computing: Information sent as qubits - these can
be 0, 1 or a superposition of 0 and 1

v

Some believe these ideas could lead to very fast computers

v

When measuring system, we have the system in a state with a
probability

\{

Makes sense therefore to consider questions relating to
probabilities and statistics
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State vectors

Postulate 1: With every isolated physical system we associate an
abstract Hilbert space H over the field C. The state of the system
is exhaustively characterised by a normalised state vector [1)).
These state vectors follow the superposition principle.

Superposition Principle: If |11),...,|¢,) are possible state
vectors, then any normalised linear combination of these vectors is
again a state vector. For example,

) = = |y1) + %Wz) +...+ %Wn) is a normalised linear
combination of these vectors, and therefore this describes a new

state vector.

Alistair Wallis Statistical Inference in Quantum Computing



States
Evolution
Postulates Composite Systems

Measurement

The simplest quantum system is a qubit (QUantum BIT) (also
known as the spin-half system). A qubit has a two dimensional
state space, with orthonormal basis {|0),|1)}. An arbitrary state
vector can therefore be written as

) = al0) + bl1),

where a,b € C and |a|? + |b|?> = 1, the normalisation condition. If
one imagines that each [¢) is an element of C”, one sees that the
normalisation condition is equivalent to (¥|¢)) = 1.
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Density operator

Now let us suppose our finite-dimensional quantum system is
prepared in one of a number of states {|¢)}, each with a
probability of px, with the probabilities px summing to one. We
call {px, |t¥k)} an ensemble of pure states and define the following
matrix, p, called the density matrix, with corresponding operator
called the density operator.

p=> Prltor) (Wl
P

A quantum system whose state |¢)) is known exactly is said to be
in a pure state. In this case, p = [1))(¢)|. Otherwise, p is in a
mixed state and is said to be a mixture of the different pure states
in the ensemble for p.
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Density Operator vs State Vector

Theorem

An operator p is the density operator associated to an ensemble
{Pk, |¥k)} if and only if it satisfies the following conditions:

1. tr(p) =1

2. pis positive semi-definite
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Alternative Postulate 1

Postulate 1’: With every isolated physical system we associate an
abstract Hilbert space H over the field C. The system is
completely described by its density operator p, which is a positive
semi-definite, self-adjoint operator with trace 1 acting on the state
space of the system. If the quantum system is in state p; with
probability pj, then the density operator associated with the system

IS
p=_Pin.
J
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Postulate 2

Postulate 2: The evolution of a closed quantum system is
described by a unitary transformation. That is, the state [¢1) of
the system at time t; is related to the state |¢)2) of the system at
time tp by a unitary operator U which depends only on the times
t1 and ty,

1h2) = Ulyr).

Postulate 2’: The time evolution of a closed quantum system is
described by the Schrodinger equation,

I hyyy,
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Alternative Postulate 2

Postulate 2”: The evolution of a closed quantum system is

described by a unitary transformation. That is, the state p; of the
system at time t; is related to the state py of the system at time t
by a unitary operator U which depends only on the times t; and t,,

p2 = Up U'.
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Postulate 3

Postulate 3: The state space of a composite physical system is
the tensor product of the state spaces of the component physical
systems. Moreover, if we have systems numbered 1 through n, and
system number k is prepared in the state pg, the joint state of the
total system is p1 ® p2 ® ... ® pp.
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Entanglement

Suppose we have the following state

0)®[0) +[H@ 1)
/2

This state has the property that there are no single qubit states |a)
and |b) such that |[¢)) = |a) ® |b)

Definition

A state of a composite system with the property that it cannot be
written as a product of states of its component systems is called
an entangled state.

) =
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Operator-valued probability measure

Definition

Let (€2, X) be a measurable space. An operator-valued probability
measure (oprom) (a.k.a generalised measurement, positive
operator valued measure) M is a collection of self-adjoint matrices
M(T) (T € X) such that the following hold

1L M(Q)=1
2. M(T) is positive semi-definite for all ' € ¥

3. For a sequence (I',), of disjoint elements of ¥,

M (U rn) = zn:/\/l(r,,).
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Postulate 4

Postulate 4: A measurement M on a d-dimensional quantum
system taking values from a measurable space (2, X) is described
by an operator-valued probability measure. If a measurement is
performed, then the probability distribution of the outcome X is
given by

P(X eT) =tr(pM(T)),

where ' € 2.

Theorem
The probability distribution described in postulate 4 is a probability
measure on the measurable space (2, X).
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Likelihood

Definition
We define the likelihood function for the single variable X to be

L(0; x) := f(x;0).
Definition
We define the loglikelihood function for the single variable X to be

1(6; x) := log(L(0; x)).
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Score and Information

Definition
We define the score V/ (6, X) for the single variable X to be

V(0, X) := I'(6; X).

Setting the score to zero gives a stationary point of /(6; x) and this
gives us one way of finding an estimate 6 of 6.

Definition
We define the expected Fisher information Ix(0) in the random
variable X to be

Ix(0) := Var(V(6; x)).
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Cramér-Rao inequality

Theorem

Let (xi, ..., xn) be a sample of n independent observations of a
random variable X whose probability function at x is f(x, 6),
where 6 is an unknown parameter. Let T(xi,...,x,) be an unbiased
estimator of 6. Then, subject to a set of regularity conditions
about the integrals and differentials of f,

1
nl(6)

Var(T) >
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Likelihood

Suppose p = p(0), where 6 is some unknown parameter. Suppose
M is an oprom taking values from a measurable space (2, X)
describing a measurement on our quantum system. So, by the
fourth postulate, we have

P(X eTl)=tr(p(0)M(I)),
where ' € . We will define 1 by
w(l) = tr(M(T))

and assume that M(I') can be written as

M(r) = /r m(x)du(x).

where m is a positive semi-definite, self-adjoint operator.
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We then have that p has probability density with respect to
given by
f(x;0) =tr(p(6)m(x)).

Assuming the relevant integrals and derivatives exist, the expected
Fisher information will be

Im(0) = E((V(6; X))?) = /Q(V(9: X))2f(x: ) dp(),

where /(0; X) := log(f(X; #)) is the loglikelihood and
V(6; X) = a@( ( X)) is the score function.
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Quantum Analogues

Definition

We define the quantum score function (or symmetric logarithmic
derivative) A of p with respect to 6 to be the self-adjoint operator
which is the solution to the equation

_9p(0) _
50 ( A+ Ap).

Definition
The expected quantum information number Ig(0) (also known as
the Helstrom information number) is defined by

Io(6) = tr(pA?).
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Big Theorem

Theorem
Im(0) < 1g(0)

Theorem
If T is an unbiased estimator of 0, then

Var(T) > 1o(0)
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